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Preface

The week before Easter 2004 a conference on spatial point process modelling
and its applications was held in Benicassim (Castellén, Spain). The organizers
targeted two aims. The first goal was to bring together most of the known
people to guarantee the high scientific quality of the meeting to foster the
theoretical and practical use of spatial point processes. The second one con-
sisted of enabling young researchers to present their work and to obtain a
valuable feed-back coming from the reknown specialists in the domain. The
contributions of all the participants were published in the proceedings book
of the conference.

The majority of the contributions in this book represents the reviewed
version of the papers presented during the conference. In order to offer the
reader a larger spectrum of this domain, authors that could not attend the
conference were also invited to contribute.

The book is constituted by 16 chapters divided in three parts and gathering
44 authors coming from 13 different countries.

The first part of the volume — represented by its two first contributions —
is dedicated to basic notions and tools for understanding and manipulating
spatial point processes.

In the first contribution, D. Stoyan presents a general overview of the
theoretical foundations for spatial point process. The author defines a point
process and a marked point process, and describes the construction of the first
and second order moment measures, which leads to the nowadays well known
summary statistics such as the K-function, L-function or the pair-correlation
function. The Poisson point process plays an important role, since in practice
it is often used as null model for hypothesis testing and as reference model
for the construction of realistic models for point patterns.

The second contribution, written by A.J. Baddeley and R. Turner, enters
directly in the “flesh” of the problem presenting the concrete use of spatial
point processes for modelling spatial point patterns, via the spatstat package
— a software library for the R language. Four main points can be tackled by
this package: basic manipulation of point patterns, exploratory data analysis,
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parametric model-fitting and simulation of spatial point processes. The very
important issue of model validation is also addressed. The contribution con-
tains also the necessary mathematical details and/or literature references in
order to avoid the use of this software as a “black box”. Two complete case
studies are presented at the end of the contribution.

There is no serious practical application without a rigourous theoretical
development. Therefore the second part of the book is more oriented towards
theoretical and methodological advances in spatial point processes theory.
Topics of this part of the book contain analytical properties of the Poisson
process (presented in the contribution by S. Zuyev), Bayesian analysis of
Markov point processes (by K. K. Berthelsen and J. Mgller), statistics for
locally scaled point processes (by M. Prokésovd, U. Hahn and E. B. Vedel
Jensen), nonparametric testing of distribution functions in germ-grain models
(by Z. Pawlas and L. Heinrich), and principal component analysis applied to
point processes through a simulation study (by J. Illian, E. Benson, J. Crawford
and H. Staines). Remarkable is the fact, that almost all these contributions
show direct applications of the presented development.

The third part of this volume is entirely dedicated to concrete, precise case
studies, that are solved within the point processes theory. The presented ap-
plications are of big impact: material science (by F. Ballani), human epidemi-
ology (by M. A. Martinez-Beneito et al.) , social sciences (by N.A.C. Cressie,
O. Perrin and C. Thomas-Agnan), animal epidemiology (by Webster et al. and
P.J. Diggle, S. J. Eglen and J. B. Troy), biology (by F. Fleischer et al. and
by A. Stein and N. Georgiadis), and seismology (by J. Zhuang, Y. Ogata and
D. Vere-Jones and by A. Veen and F.P. Schoenberg). In their contributions,
the authors show skill and cleverness in using, combining and continuously
evolving the point processes tools in order to answer the proposed questions.

We hope the reader will enjoy reading the book and will find it instructive
and inspiring for going a step further in this very open research field.

The Editors are grateful to all the authors that made possible finishing
the book within an acceptable time scheduling. A word of thanks is given to
Springer-Verlag and, in particular, to John Kimmel for creating the opportu-
nity of making this project real.

Castellén (Spain) Adrian Baddeley
May 2005 Pablo Gregori
Jorge Mateu

Radu Stoica

Dietrich Stoyan

Editors
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Fundamentals of Point Process Statistics

Dietrich Stoyan

Institut fiir Stochastik, Technische Universitit Bergakademie Freiberg,
Agricolastr. 1, 09596 Freiberg, Germany, stoyan@orion.hrz.tu-freiberg.de

Summary. Point processes are mathematical models for irregular or random point
patterns. A short introduction to the theory of point processes and their statistics,
emphasizing connections between the presented theory and the use done by several
authors and contributions appearing in this book is presented.

Key words: Marked point processes, Second-order characteristics, Spatial point
processes overview, Statistical inference

1 Basic Notions of the Theory of Spatial Point Processes

The following text is a short introduction to the theory of point processes
and their statistics, written mainly in order to make this book self-contained.
For more information the reader is referred to the text [2] and the books
[7, 16, 20, 21].

Point processes are mathematical models for irregular or random point
patterns. The mathematical definition of a point process on R? is as a random
variable N taking values in the measurable space [N, N], where N is the family
of all sequences {x,} of points of R? satisfying the local finiteness condition,
which means that each bounded subset of R? contains only a finite number of
points. In this book only simple point processes are considered, i.e. z; # x; if
15 ].

The order of the points x,, is without interest, only the set {x, } matters.
Thus the z, are dummy variables and have no particular interpretation; for
example x1 need not be the point closest to the origin o.

The o-algebra A is defined as the smallest o-algebra of subsets of N to
make measurable all mappings ¢ — ¢(B), for B running through the bounded
Borel sets.

The reader should note that the term “process” does not imply a dynamic
evolution over time and therefore the phrase “random point field” would be a
more exact term; it is used in [21]. Spatio-temporal point processes explicitly
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involving temporal as well as spatial dispersion of points constitute a separate
theory, see the paper by Zhuang et al. in this volume.
The distribution of a point process N is determined by the probabilities

P(NeY) for Y € N.

The finite-dimensional distributions are of particular importance. These are
probabilities of the form

P(N(Bl) = ’I’Ll,...,N(Bk) = nk)

where By, ..., By are bounded Borel sets and ny, .. ., ng non-negative integers.
Here N(B;) is the number of points of N in B;. The distribution of N on [N, V]
is uniquely determined by the system of all these values for k = 1,2,.... A
still smaller subsystem is that of the void probabilities

vp =P(N(B)=0)=P(NNB =)

for Borel sets B. Here N denotes the set of all points of the point process, the
so-called support. If the point process is simple, as assumed here, then the
distribution of NN is already determined by the system of values of v as K
ranges through the compact sets.

Let B be a convex compact Borel set in R with o being an inner point
of B. The contact distribution function Hp with respect to the test set B is
defined by

Hp(r)=1-P(N(rB))=0) forr > 0. (1)

In the special case of 7B = b(o, r) = sphere of radius r centred at o the contact
distribution function is denoted as F'(r) or Hy(r) and called the spherical
contact distribution function or empty space distribution function. It can be
interpreted as the distribution function of the random distance from the origin
of R? to the closest point of N. The function Hp(r) is of a similar nature, but
the metric is given by B.

A point process N is said to be stationary if its characteristics are invariant
under translation: the processes N = {x,,} and N, = {z, + x} have the same
distribution for all z in R%. So

P(NeY)=P(N, €Y) (2)

forall Y in NV and all z in R%. If we put Y, = {p EN:p_, €Y} for Y e N
then equation (2) can be rewritten as

P(NeY)=P(NeY.,).

The notion of isotropy is entirely analogous: N is isotropic if its characteristics
are invariant under rotation. Stationarity and isotropy together yield motion-
invariance. The assumption of stationarity simplifies drastically the statistics
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of point patterns and therefore many papers in this book assume at least
stationarity.

The intensity measure A of N is a characteristic analogous to the mean of
a real-valued random variable. Its definition is

A(B) = E(N(B)) for Borel B . (3)

So A(B) is the mean number of points in B. If N is stationary then the
intensity measure simplifies; it is a multiple of Lebesgue measure vy, i.e.

A(B) = Ava(B) (4)

for some (possibly infinite) non-negative constant A\, which is called the inten-
sity of N it can be interpreted as the mean number of points of N per unit
volume.

The point-related counterpart to F(r) or Hg(r) in the stationary case is
the nearest neighbour distance distribution function G(r) or D(r), i.e. the d.f.
of the distance from the typical point of N to its nearest neighbour.

Note that the application of F(r) and G(r) in the characterization of point
processes is different. This is particularly important for cluster processes. In
such cases G(r) mainly describes distributional aspects in the clusters, while
F(r) characterizes particularly the empty space between the clusters. This
different behaviour also explains the success of the J-function introduced by
[12] defined as

_1-G@)

TR

for r>0. (5)

2 Marked Point Processes

A point process is made into a marked point process by attaching a character-
istic (the mark) to each point of the process. Thus a marked point process on
R? is a random sequence M = {[z,;m,]} from which the points z,, together
constitute a point process (not marked) in R? and the m,, are the marks cor-
responding to the x,,. The marks m,, may have a complicated structure. They
belong to a given space of marks M which is assumed to be a Polish space. The
Borel o-algebra of M is denoted by M. Specific examples or marked points
are:

For x the centre of a particle, m the volume of the particle;

For x the position of a tree, m the stem diameter of the tree;

For = the centre of an atom, m the type of the atom;

For z the location (suitably defined) of a convex compact set, m the centred
(shifted to origin) set itself.

Point process statistics often uses constructed marks. Examples are:
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e m = distance to the nearest neighbour of x;
e 'm = number of points within distance r from z.

The marks can be continuous variables, as in the first two examples, indi-
cators of types as in the third example (in which case the terms “multivariate
point process” or “multitype point process” are often used, in the case of
two marks the term “bivariate point processes”) or actually very complicated
indeed, as in the last example which occurs in the marked point process in-
terpretation of germ-grain models (see [20]).

There is a particular feature of marked point processes: Euclidean motions
of marked point processes are defined as transforms which move the points
but leave the marks unchanged. So M, the translate of M by z, is given by

M, = {[z1 + z3m1], [x2 + 2;m2),...} .

Rotations act on marked point processes by rotating the points but not alter-
ing the marks.

A marked point process M is said to be stationary if for all x the translated
process M, has the same distribution as M. It is motion-invariant if for all
Euclidean motions m the process mM has the same distribution as M.

The definition of the intensity measure A of a marked point process M is
analogous to that of the intensity measure of M when M is interpreted as a
non-marked point process:

ABxL)y=E(M(BxL)) .
When M is stationary
A= XXrvgx Py, (6)

where Pp; denotes the mark distribution.

3 The Second-order Moment Measure

In the classical theory of random variables the moments (particularly mean
and variance) are important tools of statistics. Point process theory has ana-
logues to these. However, numerical means and variances must be replaced by
the more complicated moment measures.

The second-order factorial moment measure of the point process NN is the
measure «? on R?? defined by

[ #ara) a®ara) =B Y7 for) (7)
R2d z1,22€N

where f is any non-negative measurable function on R2?. The sum in (7) is
extended over all pairs of different points; this is indicated by the symbol Z;ﬁ.
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It is
E (N(B)N(Bs)) = a'?(B; x By) + A(B; N By)
and
var (N(B)) = o (B x B) + A(B) — (A(B))?.
If N is stationary then a(® is translation invariant in an extended sense:
a®(By x By) = a@((By +2) x (Bz + x))

for all z in R%.

Suppose that a(?) is locally finite and absolutely continuous with respect to
Lebesgue measure vo4. Then a(?) has a density 02, the second-order product
density:

a® (By x Bsg) = //9(2)(1‘1,x2)dx1dx2. (8)

B1 B>

Moreover, for any non-negative bounded measurable function f

E Z?& flx1,x2) ://f(ml,xg)g(g)(whxg)dxldmg.

z1,2E€EN

The product density has an intuitive interpretation, which probably accounts
for its historical precedence over the product measure and the K-function
introduced below. (Note that there are also n!* order product densities and
moment measures.) Suppose that C; and Cy are disjoint spheres with centres
21 and x2 and infinitesimal volumes dV; and dVs. Then o2 (21, 22)dV1dV; is
the probability that there is each a point of N in C; and Cs. If N is stationary
then 0 depends only on the difference of its arguments and if furthermore N
is motion-invariant then it depends only on the distance r between x; and x»
and it is simply written as o(® (r). The pair correlation function g(r) results
by normalization:

g(r) = o®(r) /X% (9)

Without using the product density o(?), the second factorial moment mea-
sure can be expressed by the second reduced moment measure IC as

a®(By x By) = X2 //C(B2 — z)dz
By

= )\2//151 (x)1p,(x + h)K(dh)dz . (10)

R4 R4



